Package: clubSandwich 0.5.11.9999

clubSandwich: Cluster-Robust (Sandwich) Variance Estimators with Small-Sample Corrections

Provides several cluster-robust variance estimators (i.e., sandwich estimators) for ordinary and weighted least squares linear regression models, including the bias-reduced linearization estimator introduced by Bell and McCaffrey (2002) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2002002/article/9058-eng.pdf> and developed further by Pustejovsky and Tipton (2017) <doi:10.1080/07350015.2016.1247004>. The package includes functions for estimating the variance- covariance matrix and for testing single- and multiple- contrast hypotheses based on Wald test statistics. Tests of single regression coefficients use Satterthwaite or saddle-point corrections. Tests of multiple- contrast hypotheses use an approximation to Hotelling's T-squared distribution. Methods are provided for a variety of fitted models, including lm() and mlm objects, glm(), geeglm() (from package 'geepack'), ivreg() (from package 'AER'), ivreg() (from package 'ivreg' when estimated by ordinary least squares), plm() (from package 'plm'), gls() and lme() (from 'nlme'), lmer() (from `lme4`), robu() (from 'robumeta'), and rma.uni() and rma.mv() (from 'metafor').

Authors:James Pustejovsky [aut, cre]

clubSandwich_0.5.11.9999.tar.gz
clubSandwich_0.5.11.9999.zip(r-4.5)clubSandwich_0.5.11.9999.zip(r-4.4)clubSandwich_0.5.11.9999.zip(r-4.3)
clubSandwich_0.5.11.9999.tgz(r-4.5-any)clubSandwich_0.5.11.9999.tgz(r-4.4-any)clubSandwich_0.5.11.9999.tgz(r-4.3-any)
clubSandwich_0.5.11.9999.tar.gz(r-4.5-noble)clubSandwich_0.5.11.9999.tar.gz(r-4.4-noble)
clubSandwich_0.5.11.9999.tgz(r-4.4-emscripten)clubSandwich_0.5.11.9999.tgz(r-4.3-emscripten)
clubSandwich.pdf |clubSandwich.html
clubSandwich/json (API)
NEWS

# Install 'clubSandwich' in R:
install.packages('clubSandwich', repos = c('https://jepusto.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/jepusto/clubsandwich/issues

Pkgdown site:https://jepusto.github.io

Datasets:

On CRAN:

Conda:

11.25 score 48 stars 4 packages 656 scripts 6.6k downloads 3 mentions 11 exports 7 dependencies

Last updated 9 days agofrom:631dbd7260. Checks:5 OK, 3 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 28 2025
R-4.5-winNOTEFeb 28 2025
R-4.5-macNOTEFeb 28 2025
R-4.5-linuxNOTEFeb 28 2025
R-4.4-winOKFeb 28 2025
R-4.4-macOKFeb 28 2025
R-4.3-winOKFeb 28 2025
R-4.3-macOKFeb 28 2025

Exports:coef_testconf_intconstrain_equalconstrain_pairwiseconstrain_zerofindCluster.rma.mvimpute_covariance_matrixlinear_contrastpattern_covariance_matrixvcovCRWald_test

Dependencies:cligluelatticelifecyclerlangsandwichzoo

Cluster-robust standard errors and hypothesis tests in panel data models

Rendered frompanel-data-CRVE.Rmdusingknitr::rmarkdownon Feb 28 2025.

Last update: 2023-06-30
Started: 2016-07-22

Meta-analysis with cluster-robust variance estimation

Rendered frommeta-analysis-with-CRVE.Rmdusingknitr::rmarkdownon Feb 28 2025.

Last update: 2022-06-11
Started: 2016-07-21

Wald tests of multiple-constraint null hypotheses

Rendered fromWald-tests-in-clubSandwich.Rmdusingknitr::rmarkdownon Feb 28 2025.

Last update: 2022-06-11
Started: 2020-07-21

Readme and manuals

Help Manual

Help pageTopics
Achievement Awards Demonstration programAchievementAwardsRCT
Test all or selected regression coefficients in a fitted modelcoef_test
Calculate confidence intervals for all or selected regression coefficients in a fitted modelconf_int
Create constraint matricesconstraint_matrices constrain_equal constrain_pairwise constrain_zero
Dropout prevention/intervention program effectsdropoutPrevention
Detect cluster structure of an rma.mv objectfindCluster.rma.mv
Impute a block-diagonal covariance matriximpute_covariance_matrix
Calculate confidence intervals and p-values for linear contrasts of regression coefficients in a fitted modellinear_contrast
State-level annual mortality rates by cause among 18-20 year-oldsMortalityRates
Impute a patterned block-diagonal covariance matrixpattern_covariance_matrix
Randomized experiments on SAT coachingSATcoaching
Cluster-robust variance-covariance matrixvcovCR vcovCR.default
Cluster-robust variance-covariance matrix for a geeglm object.vcovCR.geeglm
Cluster-robust variance-covariance matrix for a glm object.vcovCR.glm
Cluster-robust variance-covariance matrix for a gls object.vcovCR.gls
Cluster-robust variance-covariance matrix for an ivreg object.vcovCR.ivreg
Cluster-robust variance-covariance matrix for an lm object.vcovCR.lm
Cluster-robust variance-covariance matrix for an lme object.vcovCR.lme
Cluster-robust variance-covariance matrix for an lmerMod object.vcovCR.lmerMod
Cluster-robust variance-covariance matrix for an mlm object.vcovCR.mlm
Cluster-robust variance-covariance matrix for a plm object.vcovCR.plm
Cluster-robust variance-covariance matrix for a rma.mv object.vcovCR.rma.mv
Cluster-robust variance-covariance matrix for a rma.uni object.vcovCR.rma.uni
Cluster-robust variance-covariance matrix for a robu object.vcovCR.robu
Test parameter constraints in a fitted linear regression modelWald_test